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Aromatic amino acid radicals are key intermediates in nucleic
acid biosynthesis,1 DNA repair,2,3 dioxygen reduction by cyto-
chrome oxidase,4 water oxidation by PSII,5 as well as other
biological procesess.6-9 In our work on electron tunneling in
proteins,10-12 we have developed laser flash/quench methods that
potentially could facilitate the study of such highly reactive
radicals.12-14 To test our methods, we are investigating two
structurally characterized proteins, [Re(CO)3(L)(H83)]+AzM2+

and [Re(CO)3(L)(H107)]+AzM2+ (L ) 1,10-phenanthroline (phen)
or 4,7-Me2phen; Az) Pseudomonas aeruginosaazurin; M )
Cu or Zn).15,16 Of special interest is that calculations and
experiments on the H107 protein show that Cu+ oxidation via
electron transfer (ET) through an intervening tyrosine (Cu+ f
Y108•/- f Re2+) is over 2 orders of magnitude faster than
optimized (Cu+ f Re2+) electron tunneling.12

We report that phototriggered irreversible oxidation of
[Re(CO)3(phen)(H107)]+AzZn2+ produces Y108•;17 and that the
same method can be employed to generate W48• in the H83
protein (Scheme 1).

Theg ) 2.0061 signal in the EPR spectrum of a frozen solution
of irradiated [Re(CO)3(phen)(H83)]+AzZn2+/[Co(NH3)5Cl]2+ (Fig-
ure 1A)18 is attributable to a neutral tryptophan radical,19 which
in azurin can only be W48•. Since the pKa of the radical cation
(eq 3) should be well below∼4 (the value for the free amino
acid)20,21 in the hydrophobic core of the proteinâ-barrel (Figure
1B), proton release to the aqueous medium (eq 4) is expected.22

The EPR spectrum of a frozen solution of irradiated [Re(CO)3-

(phen)(H107)]+AzZn2+ (in a Y72F variant of (H107)Az, leaving
only one tyrosine in the protein) is shown in Figure 2A; theg )
2.0042 signal with partially resolved hyperfine splitting is the
signature of a neutral tyrosyl radical with moderate dihedral angles
(45° or more) for Cring-Câ-Hâ (Y108•).23
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Both K103 and E106 form hydrogen bonds to the Y108
hydroxyl in [Re(CO)3(phen)(H83)]+AzCu2+ (Figure 1B),16 thereby
partially shielding the tyrosine side chain from solvent (17.9 Å2

exposed surface area). In [Re(CO)3(4,7-Me2phen)(H107)]+AzCu2+,
however, the E106 side chain swivels away from Y108 (a change
in ø2 from trans (∼180°) to gauche+ (∼60°)); this movement in
the direction of the rhenium complex (Figure 2B) further exposes
the Y108 hydroxyl to solvent (32.4 Å2 exposed surface area).
The change in E106 conformation most likely is due to the Q107H
mutation and the Re positive charge rather than crystal packing,
because both azurin molecules in the asymmetric unit of the
crystal lattice are similarly structured. The increased exposure of
Y108 in the H107 protein facilitates deprotonation/oxidation of
the side chain hydroxyl.

The most striking finding is that W48•(H83) does not oxidize
Y108(H83) on the time scale of our freeze-trapping experiments.

One explanation is that W48• is the thermodynamic product of
[Re(H83)]+AzM2+ oxidation, which would mean that the W•/W
> Y•/Y order of reduction potentials in aqueous solution (pH 7)24

is reversed in [Re(H83)]+AzM2+. Another possibility is that
W48•(H83) is kinetically trapped at 200 K, which could occur if
kET (Y108 f W48•) were less than 0.1 s-1 at room temperature.
Rate estimates indicate that this ET reaction is not likely to be so
slow; with kET(max) ) 2 × 108 s-1 (108-48 distance:16

13 Å),11,12,25kET < 0.1 s-1 requires that pKa(Y108) be above 12
to inhibit generation of Y108• by deprotonation/oxidation; and
∆G°(Y108/W48• (+H+)f Y108•+/W48) would have to be greater
than 0.5 eV (λ ) 1 eV)12 to disfavor a pathway involving initial
formation of Y108•+. On the basis of this analysis, it is likely
that the W48•/W48 reduction potential is below that of Y108•/
Y108 in the H83 protein.
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Figure 1. (A) EPR spectrum of a frozen glass (200 K) of irradiated
[Re(CO)3(phen)(H83)]+AzZn2+/[Co(NH3)5Cl]2+ in KPi/ethylene glycol;
the spectrum does not change between 20 and 200 K, except for small
line width variations (spectrometer settings:ν ) 9.4739 GHz, modulation
frequency 100 kHz, modulation amplitude 3.0 G, microwave power 1.3
mW, time constant) 2.56 ms, conversion time) 10.24 ms, 40 scans).
Inset: sites (asterisks) of high electron density in W• (Lendzian, F.; Sahlin,
M.; MacMillan, F.; Bittl, R.; Fiege, R.; Po¨tsch, S.; Sjo¨berg, B.-M.;
Gräslund, A.; Lubitz, W.; Lassmann, G.J. Am. Chem. Soc.1996, 118,
8111-8120). (B) Environment of W48 and Y108 in [Re(CO)3(phen)-
(H83)]+AzCu2+. Covalent and hydrogen bonds (dotted lines) of the azurin
â-barrel link [Re(CO)3(phen)(H83)]+ to W48 and Y108. There are no
ionizable residues or solvent molecules in the vicinity of W48, and the
indole-N-H does not form a hydrogen bond with any protein residue.
W48 contacts I7, I20, V31, L50, F110, and L125 (shown in green); the
Y108 hydroxyl accepts a hydrogen bond from the K103 peptide nitrogen
and donates a hydrogen bond to an E106 carboxyl oxygen.

Figure 2. (A) EPR spectrum of a frozen solution (77 K) of irradiated
[Re(CO)3(phen)(H107)]+(Y72F)AzZn2+/[Co(NH3)5Cl]2+ in pH 7.0 KPi

(spectrometer settings:ν ) 9.4671 GHz, modulation frequency 100 kHz,
modulation amplitude 2.0 G, microwave power) 0.0063 mW, time
constant) 2.56 ms; conversion time) 10.24 ms, 40 scans). The EPR
spectrum of irradiated [Re(CO)3(phen)(H107)]+AzZn2+/[Co(NH3)5Cl]2+

in frozen solution is virtually identical with that shown. Inset: sites
(asterisks) of high electron density in Y• (Gräslund, A.; Sahlin, M.Annu.
ReV. Biophys. Biomol.1996, 25, 259-286). (B) Environment of Y108
in [Re(CO)3(4,7-Me2phen)(H107)]+AzCu2+. Y108 resides in a relatively
hydrophilic environment near the molecular surface; the 108-hydroxyl
accepts a hydrogen bond from the K103 peptide nitrogen, and the E106
carboxyl has swung away and is bonded to-H-N(H107).

3182 J. Am. Chem. Soc., Vol. 123, No. 13, 2001 Communications to the Editor


